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Visual short-term memory (VSTM) enables humans to form a sta-
ble and coherent representation of the external world. However,
the nature and temporal dynamics of the neural representations in
VSTM that support this stability are barely understood. Here we
combined human intracranial electroencephalography (iEEG) re-
cordings with analyses using deep neural networks and semantic
models to probe the representational format and temporal dy-
namics of information in VSTM. We found clear evidence that
VSTM maintenance occurred in two distinct representational for-
mats which originated from different encoding periods. The first
format derived from an early encoding period (250 to 770 ms)
corresponded to higher-order visual representations. The second
format originated from a late encoding period (1,000 to 1,980 ms)
and contained abstract semantic representations. These represen-
tational formats were overall stable during maintenance, with no
consistent transformation across time. Nevertheless, maintenance
of both representational formats showed substantial arrhythmic
fluctuations, i.e., waxing and waning in irregular intervals. The
increases of the maintained representational formats were specific
to the phases of hippocampal low-frequency activity. Our results
demonstrate that human VSTM simultaneously maintains repre-
sentations at different levels of processing, from higher-order vi-
sual information to abstract semantic representations, which are
stably maintained via coupling to hippocampal low-frequency
activity.

visual short-term memory | intracranial EEG | representation | deep neural
network | hippocampus

Visual short-term memory (VSTM) refers to the active main-
tenance of visual information for a short period of time (1, 2).

Classical models assume that VSTM representations are built
during initial perception and maintained via persistent firing of
neurons in prefrontal cortex (3, 4). By contrast, recent human
neuroimaging and primate neurophysiological studies suggest that
VSTM maintenance relies neither on a stable code (5, 6) nor on
persistent neuronal activity (7, 8). Instead, VSTM may involve
processes of “dynamic coding” which lead to substantial transfor-
mations of neural representations. The transformation processes
may reflect the encoding of information along the ventral visual
stream (9), the transformation of perceived stimuli into internal
representations (5, 6), or the mapping of VSTM representations
onto appropriate motor plans (10). After these transformations,
task-relevant neural representations of VSTM may be retained in a
more stable form (11). Meanwhile, despite highly dynamic coding at
the single-neuron level, neural activities at the population level
contain subspaces in which stimulus representations are stable
across VSTM encoding and maintenance (12, 13).
Regarding the persistency of neuronal activations during main-

tenance, it has been shown that item-specific VSTM representa-
tions can be retained in an “activity-silent” state during the
maintenance period (11) which does not require persistent activity
increases. Activity-silent representations can still be identified by

multivariate decoding algorithms (14–16) and can be recovered to
an active state by transcranial magnetic stimulation (TMS) impulses
(17). Meanwhile, cross-frequency coupling models of VSTM sug-
gest that individual items are represented by neural assemblies
which are synchronized via high-frequency (i.e., gamma) oscillations
that are locked to specific phases of hippocampal low-frequency
oscillations (18–20). This coupling may result in phase coding,
such that neural representations of specific items are coupled to
distinct phases of low-frequency oscillations, according to either the
identity of an item (21, 22) or its position on a list (23). Notably, a
very recent study integrated the concepts of activity-silent VSTM
representations and phase coding by showing that the amplification
of activity-silent working memory representations depends on the
phase of ongoing electroencephalography (EEG) oscillations at
which the impulse is applied (24).
In light of these dynamic processes, it remains unclear whether

and how humans can maintain stable representations of complex
visual images in VSTM. First, although simple visual features
can be decoded (14, 15) or reconstructed via encoding models
(25–27), it is unknown how faithfully (e.g., item-specific) and
how stably (i.e., temporally generalizable) natural images can be
maintained in VSTM. Second, classical models of VSTM assume
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that maintenance relies on either visuospatial or verbal infor-
mation (1). However, natural visual objects are encoded at
multiple processing stages which contain different “representa-
tional formats” (28). This processing cascade starts with the ex-
traction of lower-level visual properties (e.g., color and contrast)
to more complex texture information, to superordinate cate-
gories (e.g., animate/inanimate), up to abstract conceptual and
semantic information (9, 29). Whether human VSTM mainte-
nance relies on one or several of these representational formats
is unknown. Finally, given the complexity of these representa-
tions, a certain form of temporal dynamics (e.g., rhythmic fluc-
tuations and/or phase coding) might be essential to support their
maintenance.
Combining the high temporal resolution of human intracranial

EEG recordings with a deep neural network (DNN) and a se-
mantic model that enable the characterization of representational
formats (29–33), the current study aimed to examine the nature
and dynamics of representations during short-term maintenance
of natural visual images. An extended encoding period (3 s) was
used to capture the entirety of the dynamic processes during visual
object encoding and to clearly separate them from the subsequent
maintenance period. We also used a relatively long maintenance
period (7 s) to examine the stability of representations. Our results
revealed substantial transformations during the encoding period,
but stable item-specific maintenance in two distinct representa-
tional formats. At a finer temporal resolution, maintenance of both

representational formats exhibited arrhythmic fluctuations, which
were coupled to phases of hippocampal low-frequency activity.

Results
Behavioral Results. Intracranial EEG was recorded during a
delayed matching to sample (DMS) task (Fig. 1A) in 19 epilepsy
patients (mean age ± SD, 27.9 ± 7.1; 5 female) with depth
electrodes implanted for clinical purposes (total, 529 channels;
mean ± SD, 27.8 ± 12.4 channels per patient; Fig. 1B). Partici-
pants first encoded a word–picture pair for 3 s and then main-
tained the picture for a 7-s delay period, during which the picture
disappeared but the cue word remained on screen. After the
maintenance period, a probe was displayed and participants were
asked to indicate whether it matched the previously presented
target picture. To encourage participants to maintain visual de-
tails of the picture, the nonmatching probes were highly similar
to the respective target pictures. Participants performed well in
the DMS task (accuracy rate 0.89 ± 0.04, mean ± SD; d-prime
2.59 ± 0.49, mean ± SD; SI Appendix, SI Text); thus the following
analyses focused only on correct trials.

Item-Specific Representations during VSTM Maintenance. We first
tested whether there were item-specific neural representations
during the VSTM maintenance period. To this end, we conducted
a global representational similarity analysis (RSA), correlating
intracranial EEG (iEEG) power across channels and frequencies

Fig. 1. Experimental paradigm, intracranial EEG electrodes, and analysis approach. (A) A DMS task was used in the experiment. The same picture was paired
with different cue words in two consecutive experimental runs. The representational similarity was then calculated between trials from different runs, both
within the individual task stages (i.e., encoding–encoding similarity [EES], maintenance–maintenance similarity [MMS]) and across different task stages
(i.e., encoding–maintenance similarity [EMS]). (B) Normalized electrode localization map. Each colored sphere indicates one channel, with different colors
representing different participants. (C) Global RSA was performed by correlating iEEG power across 43 frequencies (between 2 and 100 Hz) and across all
clean channels in consecutive time windows of 200 ms, sliding in steps of 10 ms. (Left) We correlated activity patterns during one trial from the first run (left,
between dashed lines) with activity patterns during another trial in a second run (right, between dashed lines). (Right) Resulting similarity map across various
time windows. The different sections (separated by dashed lines) show within- and across-stage similarity, corresponding to EES, EMS, and MMS in A.
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(from 2 to 29 Hz in steps of 1 Hz and from 30 to 100 Hz in steps of
5 Hz) (34) within consecutive overlapping time windows of 200 ms,
incrementing in steps of 10 ms (Fig. 1C). Item-specific repre-
sentations were identified by comparing neural pattern similarity
of trial pairs with the same picture (within-item [WI] similarity)
versus trial pairs with different pictures (between-item [BI]
similarity) (Fig. 1A andMaterials and Methods). We averaged WI
and BI maintenance–maintenance similarities (MMS) across the
entire delay period (Fig. 2A) and compared them using a paired
t test. This analysis revealed greater WI than BI MMS (t(18) =
2.57, P = 0.02, Fig. 2B), providing clear evidence for item-
specific representations during the VSTM maintenance period.
Representations from two different encoding periods are maintained.We
next examined which encoding periods contained representa-
tional formats that were maintained during VSTM. To this end,
we calculated the encoding–maintenance similarity (EMS) be-
tween each encoding time window and each maintenance time
window (Fig. 2 C, Left). Item-specific EMS was then identified
via the contrast of WI EMS and BI EMS. For each encoding
time window, item-specific EMS was averaged across the entire
maintenance period and then tested against zero. Two temporal
clusters during encoding showed significant item-specific EMS
that survived cluster-based correction for multiple comparisons
across all encoding time windows (Materials and Methods): an
early cluster (250 to 770 ms, t(18) = 3.51, P = 0.003; Pcorrected =
0.012) and a late cluster (1,000 to 1,980 ms, t(18) = 4.00, P <
0.001; Pcorrected < 0.001) (Fig. 2 C, Right). A two-way ANOVA
with “cluster” (early vs. late cluster) and “item specificity” (WI vs.
BI EMS) as repeated measures revealed a significant interaction
effect (F(1,18) = 6.44, P = 0.021; Fig. 2D), indicating greater item
specificity for the late than the early cluster. The WI EMS was also
greater in the late than in the early cluster (t(18) = 2.93, P =
0.009). These results suggest that information from both encoding
periods contributes to representations during maintenance, with a
more prominent role of the late encoding period.
Distinct representational formats in early and late encoding clusters. The
above analyses indicate that representations from two different
encoding periods are maintained in VSTM. However, they do

not indicate whether these two clusters contain similar or dif-
ferent representational formats. To address this question, we
recomputed item-specific EMS in the early cluster while regress-
ing out the representations in the late cluster and vice versa. We
still found significant item-specific EMS in both the early (t(18) =
2.51, P = 0.022) and the late encoding clusters (t(18) = 3.66, P =
0.002) (SI Appendix, Fig. S1), indicating that VSTM contains in-
formation in two distinct and separable representational formats.
To further characterize the representational formats of the

two encoding clusters, we compared the corresponding neural
representations with representations in a DNN and a semantic
model (Fig. 3A and Materials and Methods). In this DNN, low-
level visual features (e.g., color, contrast) are processed in early
layers and more complex object features are processed in deeper
layers [see SI Appendix, Fig. S2 for detailed depictions of the
“AlexNet” (35) and SI Appendix, Fig. S3 for the representational
structure in all DNN layers] (SI Appendix, SI Text). We con-
structed neural similarity matrices in individual encoding time
windows based on correlations between all possible pairs of
items. The DNN similarity matrices were obtained by correlating
activations of artificial neurons between the corresponding pairs
of items in each DNN layer. The neural similarity matrices were
then correlated with these DNN similarity matrices (Fig. 3B).
We averaged the Fisher Z-transformed correlation values within
the early and the late encoding cluster, separately for each of the
eight DNN layers.
Comparing the correlation values for individual layers against

zero showed that neural representations in the early cluster were
significantly correlated with DNN representations in deep layers
(layer 5, PFDR = 0.049; layer 6, PFDR = 0.049; layer 7, PFDR =
0.022; layer 8, PFDR = 0.022, corrected for multiple comparisons
by false discovery rate [FDR]), marginally significantly correlated
with DNN representations from layer 2 to layer 4 (layer 2, PFDR =
0.050; layer 3, PFDR = 0.058; layer 4, PFDR = 0.050), and not
significantly correlated with representations in the first layer
(layers 1, all PFDR = 0.16). By contrast, representations in the late
cluster were not significantly correlated with representations in
any DNN layers (all PFDR > 0.46) (Fig. 3C). We confirmed this

Fig. 2. Maintenance of item-specific representations from two distinct encoding periods. (A) WI and BI MMS. WI MMS was calculated between pairs of items
with same pictures but different cue words, while BI MMS was calculated between pairs with different pictures and different cue words. (B) Averaged WI and
BI MMS across the entire maintenance period (7 s). Each gray dot indicates one participant. (C) Two encoding clusters showed item-specific EMS. Item-specific
EMS (WI-BI EMS) was calculated for consecutive encoding time windows (vertical axis). (Left) EMS between individual time windows of encoding and
maintenance period. (Right) EMS averaged across the entire maintenance period, separately for each encoding time window. The two shaded areas mark the
two encoding clusters with significant item-specific EMS. (D) WI and BI EMS in the early and the late cluster. Greater item-specific EMS was found in the late
cluster than in the early cluster. Each gray dot indicates one participant. Error bars reflect one SEM. *P < 0.05; ***P < 0.001.
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result by performing a permutation analysis in which we recreated
the neural similarity matrices after randomly shuffling the picture
labels (SI Appendix, Fig. S4). A two-way ANOVA with “layer”
(eight layers) and “encoding cluster” (early vs. late cluster) as
repeated measures revealed significant main effects of encoding
cluster (F(1,18) = 13.23, P = 0.002) and layer (F(7,126) = 2.41, P =
0.02), but no significant interaction effect (F(7,126) = 0.54, P =
0.80), indicating stronger higher-order visual representations in
the early cluster.
To examine whether the representations in the two encoding

clusters contained semantic information, we extracted the word
labels for all pictures in the experiments (SI Appendix, SI Text)
and then used a Chinese semantic model, i.e., Directional Skip-
Gram (36), to convert each label into a vector with 200 semantic
features. We obtained a semantic similarity matrix between the
semantic features of all possible picture pairs (SI Appendix, Fig.
S3). The neural representational similarity matrices in individual
encoding time windows were then correlated with the semantic
similarity matrix (Fig. 3D). We found that the semantic similarity
matrix was significantly correlated with the neural similarity
matrices in both the early (t(18) = 3.52, P = 0.002) and the late
(t(18) = 3.04, P = 0.007) encoding clusters (Fig. 3E). This result
was also confirmed by the permutation analysis described above
(early cluster, P < 0.001; late cluster, P = 0.003; SI Appendix,
Fig. S4).

To disentangle the contributions of perceptual versus abstract
semantic information, we iteratively regressed out the similarity
matrices of all eight DNN layers from the semantic similarity
matrix. We correlated the resulting “abstract semantic similar-
ity matrix” with the neural representational similarity matrices in
the early and the late cluster, respectively (Fig. 3D). The analysis
revealed significant correlations for the late encoding cluster
(t(18) = 2.53, P = 0.02), but not for the early encoding cluster
(t(18) = 1.44, P = 0.17) (Fig. 3F). The results indicate that only
the late encoding cluster contains abstract semantic representa-
tions, while semantic representations in the early cluster are
shaped by higher-order perceptual information.
Stable maintenance of both representational formats during VSTM. We
next examined the temporal dynamics during the maintenance of
item-specific representations in VSTM. Specifically, two aspects
of temporal dynamics were examined: first, whether the repre-
sentational formats were stable or whether they underwent a sys-
tematic transformation across the maintenance period and, second,
whether the strength of reactivated representational formats was
stable across time.
We performed two analyses to examine the stability of repre-

sentational formats. In the first analysis, we calculated the similarity
between the neural activities at different encoding and maintenance
time windows across two independent runs, which shared the same
items. A lower off-diagonal than on-diagonal similarity would indi-
cate transformation of representational formats from one time point

Fig. 3. Distinct representational formats in the early and late encoding clusters. (A) Linking neural representations to visual, semantic, and abstract semantic
representations, respectively. Neural similarity matrices were created by correlating activities between all pairs of different pictures in individual encoding
time windows. Visual similarity matrices were obtained by correlating activations of the artificial neurons in each DNN layer. The semantic similarity matrix
was generated by calculating the cosine similarities of the word vectors between picture labels. An abstract semantic similarity matrix resulted from iteratively
regressing out the visual similarity in each DNN layer from the semantic similarity matrix. Exemplar pictures of items from the four categories (animals, fruits,
electrical devices, and furniture) used in the study are shown at Left. (B) Correlation (Spearman’s rho) between DNN and neural similarity maps for each DNN
layer and each encoding time window. Two dashed boxes indicate the time window of the early and the late encoding cluster showing significant item-
specific EMS. (C) Averaged correlation between neural similarity in the early and late encoding clusters with the similarity matrices in each DNN layer. Each
color dot indicates the correlation value from one participant. (D) Correlation values resulting from comparing the neural similarity with the semantic (blue
line) and the abstract semantic similarity (orange line) in each encoding time window. Two dashed boxes mark the time windows corresponding to the early
and the late encoding cluster. Color shaded areas around the lines reflect one SEM. (E) Semantic representations correlated with neural representations in
both the early and late encoding clusters. (F) Abstract semantic representations correlated with neural representations in the late encoding cluster. Each color
dot indicates one participant. Error bars reflect one SEM. *P < 0.05; **P < 0.01.
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to another, reflecting dynamic coding (13). This analysis revealed two
clusters that showed dynamic coding during the encoding period
(Pcorrected < 0.001, corrected for multiple comparisons by cluster-
based permutation test; Fig. 4A), but not during the maintenance
period (Pcorrected > 0.24). To better characterize the represen-
tational dynamicity, we computed the dynamicism index (di)
across time (Materials and Methods). The dynamicism index
reached relatively large values during the first 2 s of encoding and
then dropped to near zero across the entire maintenance period
(Fig. 4 A, Bottom). These results suggest that representational
formats were dynamically transformed during the encoding pe-
riod, but remained stable across the maintenance period.
In a second analysis, we further tested whether the represen-

tational formats were systematically transformed toward the
format in the preprobe period (12). We hypothesize that if neural
representations gradually change from one time point (t1) to an-
other time point (t2), the pattern of neural activities between these
time points would become increasingly less similar to the pattern
at t1 and more similar to the pattern at t2. We defined three
temporal clusters as reference points, the early encoding cluster
(250 to 770 ms), the late encoding cluster (1,000 to 1,980 ms), and

the preprobe time period, i.e., the last second of the maintenance
period (9,000 to 10,000 ms). Neural activities in these three clus-
ters of one trial were then correlated with the activities in each
encoding and maintenance time point of a trial with the same
picture from a different run. This analysis showed that the simi-
larity with the early and late encoding clusters peaked within the
time windows of the respective clusters. However, the similarity
with the preprobe time period showed no distinctive peak, not
even during the last second of the maintenance period (Fig. 4B).
This result suggests that the representational formats in the early
and late encoding clusters did not systematically change to prepare
for the upcoming response in our task.
To systematically quantify the dynamics of representations in

these three clusters, we divided the encoding and maintenance
period into nonoverlapping 1-s time bins (e.g., first time bin, 0 to
1 s; second time bin, 1 to 2 s, etc.). We then applied a linear fit to
the similarity values within each time bin, separately for simi-
larities with each of the three clusters. We found that neural
representations changed dynamically during the first 2 s of the
encoding period (Fig. 4 B, Bottom Right and SI Appendix, SI Text).
They also changed during the first second of the maintenance

Fig. 4. Stable representational formats during the maintenance period. (A) Representational formats were dynamically transformed during the encoding
period but remained stable during the maintenance period. Significant off-diagonal similarity reduction was found during the encoding period (Upper Left)
but not the maintenance period (Upper Right). Black clusters show significant dynamicity after cluster-based permutation testing. Bottom shows time course
of the “dynamicism index” that characterizes dynamic coding across the encoding (Bottom Left) and maintenance (Bottom Right) periods. Indexes
approaching zero indicate stable representations. (B) Temporal generalization analysis showing the overall stability of representational formats during the
short-term memory delay period. (Top) Fluctuations of similarities between each time window with the early (orange) and late (brown) encoding cluster and
the last 1 s of the maintenance period (blue). (Bottom) Statistical results (FDR corrected) about the linear change of the fluctuations in the Top within each 1-s
time bin. The colors of the stars correspond to the respective color of lines. (C) Exemplary single-trial WI EMS (early encoding cluster), which shows pro-
nounced temporal fluctuations. (D) Rhythmic activity in raw iEEG data during the pretask resting period from one participant. IRASA identified a significant
oscillatory component (black line) which peaked at 9.38 Hz above the estimated critical threshold of 1/f spectrum (red line: mean + 3 SD). (E and F) Lack of
rhythmicity in EMS time courses for either the early (E) or the late cluster (F). Shaded areas depict one SEM. *P < 0.05; **P < 0.01; not significant (n.s.), P > 0.05.
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period, probably due to the sudden offset of the stimulus (37).
Importantly, however, they remained stable during the remaining
encoding period and the last 6 s of the maintenance period. As a
control, we computed item-specific EMS in the last 6 s of the
maintenance period and found significant item-specific EMS for
both the early (t(18) = 2.66, P = 0.016) and the late encoding
clusters (t(18) = 3.61, P = 0.002), ruling out that the stability of
EMS was due to an overall lack of item-specific information.
Together, these results show that representational formats

were substantially transformed during stimulus encoding. How-
ever, except for the first second of the maintenance period, they
neither decayed further nor were systematically transformed to
match activity prior to probe presentation, providing converging
evidence for an overall stability of neural representational for-
mats during VSTM maintenance.
Arrhythmic fluctuations in representational strengths during VSTM. De-
spite this overall stability, we observed substantial fluctuations of
WI EMS (Fig. 4C). Further tests revealed nonpersistent item-
specific representation across the maintenance period (SI Ap-
pendix, Fig. S5). We thus tested whether the time courses of WI
EMS showed rhythmic fluctuations. To improve the temporal
resolution of this analysis, we recomputed EMS using shorter
maintenance time windows of 10 ms. We used a well-established
method (irregular-resampling auto-spectral analysis [IRASA])
(38) to assess possible rhythmicity of WI EMS time series for
both the early and the late encoding clusters. Supporting the
validity of the IRASA method in our iEEG dataset, we detected
prominent alpha oscillations during the pretask resting period (see
Fig. 4D for exemplar data from a participant). However, IRASA
did not reveal any oscillatory components in the time courses of
WI EMS with either the early (Fig. 4E) or the late cluster (Fig.
4F). Thus, we did not find any evidence for rhythmic fluctuations
of stimulus-specific activity during VSTM maintenance.
Hippocampal phase coding of VSTM representations. We next investi-
gated whether the fluctuating reactivation of representational
formats was related to the phase of hippocampal low-frequency
activity during the maintenance period (18, 39). Only 14 partic-
ipants with at least one clean hippocampal channel were included
in this analysis. Using the Multiple Oscillations Detection Algo-
rithm (MODAL) (40), we identified hippocampal oscillations
across a broad frequency range (1 to 10 Hz) across trials and
participants (SI Appendix, Fig. S6). Following previous work (41,
42), we extracted the phases of hippocampal activity from 1 to
10 Hz and analyzed cross-frequency coupling (Materials and
Methods). We first replicated previously found cross-frequency
coupling effects, showing that the amplitude of high-frequency
activities (30 to 100 Hz) was clustered to the phases of low-
frequency activity in the hippocampus (after removing one out-
lier, t(12) = 4.06, P = 0.002; SI Appendix, Fig. S7).
Following a previous study (21), we then tested whether item-

specific representations occurred predominantly during specific
phases of concurrent hippocampal low-frequency activity. We used
the Moore–Rayleigh test (43) to quantify the “representation-
to-phase-clustering” value r*, indicating the dependence of WI
EMS values on the phase of hippocampal low-frequency activity
(Fig. 5 A and B and Materials and Methods). This was done sep-
arately for the early and late clusters (see exemplar data of single
trials in SI Appendix, Fig. S8). We obtained a surrogate r* as the
baseline for each trial by circularly shifting the WI EMS values
with respect to the concurrent phases of hippocampal low-
frequency activity. This analysis showed that the empirical r*
values were significantly greater than surrogate r* values for both
the early (t(13) = 2.26, P = 0.042) and the late encoding clus-
ter (t(13) = 2.95, P = 0.011) (Fig. 5C), indicating significant cou-
pling between WI EMS and the phases of hippocampal low-
frequency activity.
In a second analysis, we tested for the existence of phase

coding—i.e., whether representations of specific items were locked

to similar phases across repeated presentations (Fig. 5D). To this
end, we computed the difference of preferred phases between
repetitions of the same items (WI) and between different items (BI)
(Fig. 5E). We found smaller phase differences for WI pairs than for
BI pairs, for both the early (t(13) = −5.55, P < 0.001) and the late
cluster (t(13) = −4.71, P < 0.001; Fig. 5F). These results demon-
strate that representations of the same item tend to occur at similar
phases of hippocampal low-frequency activity.
Several control analyses revealed that EMS phase coding was

not only driven by electrodes that were consistently activated
during repetitions of the same item or by activations that were
locked to a consistent phase of hippocampal low-frequency ac-
tivity (SI Appendix, SI Text and Fig. S9). Finally, all of the above
analyses were based on the early and late clusters that were
separated by a dip. To ensure our results did not critically depend
on how encoding clusters were defined, we redefined these clus-
ters as 500-ms time windows centered around pronounced peaks
of the EMS time series. Analyses based on the newly defined
clusters replicated the main results reported above (SI Appendix,
SI Text and Fig. S10), indicating that our results are robust to
different methods to define the clusters.

Discussion
Can human VSTM achieve stable representations of complex
natural images? If so, which representational formats and tem-
poral dynamics characterize VSTM maintenance in humans?
The results described here support a different view on these
fundamental questions. First, our results provide clear evidence
for item-specific representations of natural visual images during
an extended maintenance period. Second, we show that these
representations originate from two distinct time windows during
encoding that contain higher-order visual representations and
abstract semantic representations, respectively. Third, the reac-
tivation of these different representational formats was coupled
to stimulus-specific phases of hippocampal low-frequency activ-
ity during the maintenance period (SI Appendix, Fig. S11).

Item-Specific and Stable Representations of Complex Images in
VSTM. Previous studies have shown that simple visual stimuli
such as colors or the orientation of gratings can be successfully
decoded using multivariate classification analyses (14, 15, 44).
We extended these findings by showing that representational
similarity analysis could be successfully employed to identify
item-specific representations of natural visual objects during VSTM
maintenance. Using this approach, we observed stimulus-specific
representations that were widely distributed across the mainte-
nance period without systematic decline or transformation.
Several factors might have contributed to the relative stability

of the representations. First, we used a simple DMS task where
participants needed only to maintain one object at a time in
VSTM and no interference was introduced. By contrast, some of
the studies that reported dynamic coding employed paired as-
sociate learning tasks, in which representations were trans-
formed from a perceptual to a response-related code during the
maintenance phase (6). Second, iEEG recordings reflect a neural
population coding (45). In the presence of heterogeneous ac-
tivities of single neurons, more sustained stable representations
may still be achieved through population coding (12, 13). Third,
our results suggest that the employment of an extended encoding
period (3 s) and a rather long maintenance period (7 s) might
have enabled us to clearly separate different processing stages
and observe stable representational formats across the VSTM
maintenance period. Previous studies have shown that, during
visual processing, brain activities gradually and progressively
changed from representing low-level visual information to rep-
resenting superordinate category information within the first few
hundred milliseconds (9, 46, 47). In the current study, we found
that neural representations underwent substantial transformations
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during the first 2 s of the encoding period and were overall stable
afterward, including the extended maintenance period. This sug-
gests that the encoded representations went through an extended
transformation process before reaching a stable state for mainte-
nance. As a large body of previous studies used only a brief
stimulus presentation period (e.g., less than 1 s) (6, 13), the dy-
namics of early maintenance in these studies might reflect this
transformation of representational formats.

Higher-Order and Abstract Representational Formats Were Maintained
in VSTM. By linking the neural representations to visual represen-
tations in a DNN, we found that neural representations in an early
encoding cluster (250 to 770 ms after stimulus onset) were cor-
related with deeper but not early layers of a visual DNN. These
representations correspond to higher-order visual processing steps
that eventually support the extraction of object categories. Our
results contribute to a growing body of literature indicating that
representations within various layers of DNNs match representa-
tions in the ventral visual processing stream (30, 32, 48). Neural
activities in the late encoding cluster were not associated with
DNN representations in any layers but could be explained by se-
mantic similarities. This suggests that neural representations in the
late cluster contain fewer visual components and instead reflect
abstract long-term knowledge. Consistently, after regressing out
the perceptual contributions to the semantic similarity, only the
representations in the late cluster were correlated with the ab-
stract semantic similarity patterns. Notably, the lack of association
between the later cluster representation and the visual DNNmight
be due to the choice of a specific DNN model, as the AlexNet is a
pure feed-forward network. Future studies could examine the
nature of representation in more complex and arguably more bi-
ologically realistic DNNs, such as recurrent models (49) or deep
reinforcement learning networks (50).
Why were the abstract semantic representational formats

more robustly maintained than the visual representations, with

the encoding–maintenance similarity in the late encoding cluster
showing stronger item-specificity? One possibility is that main-
taining these representations reduces memory load. Moreover,
they might reflect information that integrates bottom–up exter-
nal inputs and top–down long-term knowledge (51), and this
long-term knowledge has been shown to contribute to short-term
memory maintenance of complex images (52). When only simple
visual stimuli, such as colors, orientations, or contrasts, are
maintained, the early visual representations from the primary
visual cortex may need to be faithfully maintained (15, 26). Fu-
ture work should collect more samples from different brain re-
gions and use “human super-EEG” analysis (53) to provide a better
characterization of the representational nature of VSTM at a
higher spatial resolution.
Studies on long-term memory encoding and retrieval further

support the idea that representations from late processing stages
can be stably remembered. For example, scalp-EEG studies sug-
gest that the stability of representations across repetitions in a late
time window (500 ms after stimulus onset) supports subsequent
memory (54, 55). Moreover, representations from a late encoding
phase (∼1,000 to 2,000 ms after stimulus onset) were found to be
reinstated during successful memory retrieval (56). Another recent
study demonstrated that stimulus-specific activity from a late
encoding stage was reactivated during offline periods and sleep,
thereby supporting long-term memory consolidation (57). Finally,
functional magnetic resonance imaging (fMRI) studies revealed
that pronounced item-specific memory reactivations during re-
trieval occurred in the parietal lobe but not in the ventral visual
cortex (58). Together, these results suggest that late, abstract,
and transformed representational formats support stable short-
term maintenance, as well as long-term storage and reactivation.

VSTM Representational Formats Reactivated at Specific Phases of
Hippocampal Low-Frequency Activity. In contrast to the persistent
activity model of VSTM, the occurrence of sparse and irregular

Fig. 5. Hippocampal phase coding during VSTM maintenance. (A) Depiction of hippocampal channels from 14 participants. Spheres with the same color are
from the same participant. (B) Exemplar data from a single trial showing the time course of WI EMS values from the early encoding cluster (Top) and the
concurrent phase of hippocampus low-frequency activity (1 to 10 Hz) (Bottom). (C) WI EMS clustering to the phase of hippocampal low-frequency activity for
both the early and the late encoding cluster. (D) Schematic depiction of phase coding. The same item from different trials should be locked to similar phases
of hippocampal low-frequency activity, whereas different items should be locked to different phases. As a result, the phase differences between WI pairs
should be smaller than those of BI pairs. (E) Probability density function of phase differences for WI pairs and BI pairs for one participant. (F) Group-averaged
phase differences for WI and BI pairs in the early and the late cluster. Each gray dot indicates one participant. Error bars reflect one SEM. *P < 0.05;
***P < 0.001.
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neuronal bursts has been posited as a mechanism to optimize
information transferring (59). Between these bursts, working
memory representations are assumed to be maintained “silently”
by spiking-induced changes in synaptic weights (60, 11). The
spikes couple with slow oscillations to refresh synaptic weight
changes (60), and the refresh rate may account for the limited
capacity of short-term memory (61). Compared with the persis-
tent activity model of VSTM, this dynamic coding scheme is more
robust to interference and disruption, consumes less energy, and
enables the simultaneous maintenance of multiple items (62).
Consistently, we found that reactivations of item representations
were not persistent, but showed pronounced irregular fluctuations.
These fluctuations were locked to specific phases of hippocampal
low-frequency activity. These results support the idea that VSTM
does not entail persistent activation of item-specific representa-
tions. However, the electrodes we used could not record single-
unit activities, and existing studies have revealed persistent activ-
ities in single neurons during VSTM (63, 64).
Some theoretical models suggest that items in working mem-

ory are coded by neural assemblies which are synchronized in the
gamma frequency band and locked to the phase of low-frequency
oscillations, in particular in the theta band (19, 39). Human in-
tracranial EEG studies have found support for this model by
demonstrating that high-frequency activity is indeed nested
within phases of low-frequency activity in hippocampus (18).
Recent work also found that letter selective activity is coupled to
theta phases during working memory maintenance (23). The
current study extends this work by directly showing hippocampal
phase coding of stimulus-specific representational formats during
short-term memory maintenance. More importantly, the same item
tended to lock to a similar phase of hippocampal low-frequency
activity during VSTM, using a similar coding scheme to that in a
recent iEEG study during virtual navigation (21). Interestingly,
unlike the rhythmic reactivation that is repeated on every cycle of
low-frequency oscillations (65), we did not find evidence for
rhythmic reactivations, consistent with a monkey multiunit record-
ing study which showed that feature-specific information reoccurred
in discrete and irregular bursts (7). Corroborating this finding, a
recent study found that despite the lack of low-frequency oscilla-
tions in the hippocampus of bats, the spiking was locked to specific
phases of hippocampal activity (66).
Exactly how such irregular reactivation of item-specific repre-

sentational formats at specific phases of hippocampal low-frequency
activity could support VSTM maintenance remains to be further
examined. One possibility is that the arrhythmic reactivation reflects
the intermittent interaction between short-term memory and long-
term knowledge, which is known to rely on the hippocampus (67).
In addition, when only a single item is maintained, it might not be
necessary to rigorously refresh its representation in each oscillatory
cycle, especially when a higher-order abstract representational for-
mat is maintained. Future studies should examine how the nature of
stimulus and working memory load could affect the oscillation of
VSTM representations and its coupling with the phase of hippo-
campal low-frequency activity.
To summarize, our study suggests that stable item-specific VSTM

maintenance of natural images is achieved via reactivations of
multiple higher-order and abstract representational formats that are
phase locked to hippocampal activity. These results contribute to
the development of a more rigorous, mechanistic understanding
of VSTM.

Materials and Methods
Participants. Nineteen patients (27.9 ± 7.1 y, 5 female) with medically in-
tractable epilepsy participated in the study. All patients were implanted
with depth electrodes for diagnostic purposes using a stereotactic procedure
with the Leksell frame. Each depth electrode (0.8 mm in diameter) had ei-
ther 12 or 16 contacts (channels) that were 1.5 mm apart, with a contact
length of 2 mm. Recordings were performed at the Center of Epileptology,

Xuanwu Hospital, Capital Medical University, Beijing, China. The study was
conducted according to the latest version of the Declaration of Helsinki and
approved by the Institutional Review Board at Xuanwu Hospital. All par-
ticipants gave written informed consent.

Experimental Design. Fifty-six pictures from four categories (i.e., familiar
fruits, animals, electrical devices, and furniture) and 112 two-character Chi-
nese verbs were used in this study. There are 14 pictures in each category.
Each picture was paired with two different cue words across two runs. As-
sociations were randomized across participants. For each picture, a very
similar picture was also selected, which was used as a lure in the probe phase
of the experiment (e.g., Fig. 1A).

A DMS task was used in the study. Each trial consisted of three phases,
i.e., an encoding phase, a maintenance phase, and a probe phase. During the
encoding phase, a word–picture pair was presented at the center of the
screen for 3 s. Participants were instructed to pay attention to the details of
the picture and memorize the associations. During the maintenance phase,
the picture disappeared while the cue word remained on the screen, and
participants were asked to maintain the picture as vividly as possible for 7 s.
During the probe phase, a picture appeared on the screen and participants
were asked to indicate whether it was the same as the target picture, by
pressing one of two buttons within 2 s. The next trial started after 0.3 s of
fixation, followed by 0.8 to 1.2 s of a blank screen. For half of the trials in a
run, the probe picture was the same as the target picture (match trials); for
the other half, a very similar lure picture was presented (nonmatch trials) to
encourage participants to pay attention to the visual details of the target
picture. Following each run of the VSTM task, there was a long-term
memory task, during which subjects were shown the cue words and asked
to recall the category of the associated picture. The current study focuses
only on the VSTM task. The cue on the screen was presented to encourage
participants to remember the association between the cue and the picture
and, meanwhile, reduce the processing load and prevent the distraction
from processing the picture during the maintenance period.

We randomly selected 14 target pictures for each session. Each session
consisted of two runs. In the first run, each picture was paired with one of a
randomly selected set of 14 words, resulting in 14 unique word–picture pairs.
In the second run, we randomly selected 14 new words and paired them
with the same pictures as in the first run, resulting again in 14 word–picture
pairs. Each pair was repeated three times within a run and the lag between
repetitions was 7 to 12 trials. This allowed us to calculate the representa-
tional similarity of the same pictures across the two runs and, meanwhile, to
avoid the possible confound of cue words on WI (similarity between pairs
with the same picture but different words) versus BI (similarity between
pairs with different pictures and words) pattern similarity comparisons (58).
Participants finished 2 to 4 sessions (3.36 ± 0.83 sessions) of the VSTM task.

Intracranial EEG Recordings and Analyses. iEEG data were recorded using
amplifiers from Brain Products GmbH, NeuroScan (Compumedics Limited) or
the Nicolet electroencephalogram system (Alliance Biomedica Pvt Ltd.), with
sampling rates of 2,500, 2,000, and 2,048 Hz, respectively. Online recording
data were referenced to a common contact placed subcutaneously, which
was simultaneously recorded with the depth electrodes. During offline
preprocessing, channels that were within the epileptic loci or severely con-
taminated by epileptic activity were removed from further analyses. To pre-
serve the relative activation patterns across channels when examining
distributed item-specific representations and conserve neural activities across a
broad frequency band (e.g., 1 to 100 Hz), we rereferenced all raw iEEG data to
the average activity across all clean channels. Notably, when using the white-
matter rereferencing scheme (i.e., the average activity of channels in white
matter), we obtained a highly similar pattern of item-specific representations
(SI Appendix, Fig. S12).

Data analysis was performed by EEGlab (https://sccn.ucsd.edu/eeglab/) and
the Fieldtrip toolbox (68) implemented in Matlab (MathWorks Inc.), as well
as using in-house Matlab code. To remove 50 Hz line noise, data were band-
stop filtered at 50 ± 2 Hz and its harmonic frequencies. The filtering was
done using fourth-order Butterworth filters. Trials contaminated by artifacts
were identified based on visual inspection and excluded from further
analyses. Each trial was epoched from 4 s before stimulus onset to 4 s after
the end of the maintenance phase (i.e., −4 s to 14 s with respect to stimulus
onset). This long trial duration was used to eliminate edge effects in time-
frequency transformation, and we focused only on the results between −500 ms
and 10 s. Time-frequency transformation was performed within each trial using
the complex Morlet wavelets. Wavelet kernels with six cycles were used to ex-
tract the power at each frequency from 1 to 100 Hz in 1-Hz steps. All power
spectral data were down-sampled to 100 Hz after time-frequency transformation.
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This resulted in a 100 (frequencies) × 1,050 (time points) time-frequency matrix for
each channel and each trial. Afterward, we normalized the power separately for
each frequency and each channel by subtracting the mean power of all trials and
then dividing by the SD of the power across trials.

Channel Localization. Channel locations were identified by coregistering a
postimplantation computed tomography (CT) image to a preimplantation
MRI, which was afterward normalized to MNI space in Statistical Parametric
Mapping (SPM)12. The anatomical locations of channels were then identi-
fied and plotted using 3D slicer (https://www.slicer.org/).

To assign a label of cortical regions to each channel, we segmented each
patient’s structural MRI using FreeSurfer (surfer.nmr.mgh.harvard.edu) and
identified the closest cortical or subcortical label for each channel in each
patient. Channels in subcortical regions, including hippocampus, were visu-
ally verified in each patient’s native anatomical space. Across all patients,
529 clean channels were included in the analyses (mean number of clean
channels per patient, 27.8; SD, 12.4).

Representational Similarity Analysis. Representational similarity was esti-
mated between trials from two consecutive runs within a session. The WI
similarity was calculated between trials using the same picture but paired
with different cue words, so that the pattern similarity was not confounded
by identical cue words. The BI similarity was calculated between trials using
different pictures and different cues. The WI and BI pairs were matched in
terms of lags and calculated only between correct trials.

We used a sliding time window approach to calculate the representational
similarity. A 200-ms sliding time window was used, with incremental steps of
10 ms (i.e., 190 ms overlap between two consecutive windows). Power
spectral values were first averaged across time points within each sliding
window of 200 ms, separately for each channel and frequency. Forty-three
frequencies in the range between 2 and 100 Hz were then extracted in steps
of 1 Hz between 2 and 29 Hz and in steps of 5 Hz between 30 and 100 Hz, as
in a previous study (34).

To identify item-specific representations across channels and frequencies
(i.e., global RSA), the power spectral values of all channels and frequencies
within each time window were vectorized. The representational similarity
between two trials was then obtained by calculating the Spearman’s cor-
relation between the features of the two trials. All correlation values were
Fisher Z-transformed before further statistical analyses.

Notably, global RSA can be calculated either separately for encoding and
maintenance periods or between encoding and maintenance periods. To
examine item-specific representations during the maintenance period, we
calculated MMS. Likewise, item-specific representations during the encoding
period were identified by calculating EES. To examine which processing
steps during the encoding period contained representational formats that
contribute to stimulus-specific maintenance, we calculated EMS. In this
analysis, we correlated neural activities in each encoding window with ac-
tivities in each maintenance window. For all these analyses, item-specific
representations were obtained by contrasting the WI versus BI similarity.

Nonparametric Cluster-Based Permutation Test. A nonparametric statistical
test based on the cluster-level permutation was implemented in Matlab to
correct for multiple comparisons (69). Specifically, for individual time win-
dows, statistical tests were performed between conditions (e.g., WI vs. BI),
and time windows with statistical values larger than a threshold (P = 0.05)
were selected and combined into contiguous clusters on the basis of adja-
cency. Cluster-level statistics were computed by taking the sum of the t
values within a cluster. The distribution of cluster-level statistics under the
null hypothesis was constructed by randomly permuting condition labels
(e.g., WI vs. BI) for 1,000 times, and the maximum cluster-level statistic in
each permutation was extracted. If no time point showed a significant t
value for a given surrogate, a value of 0 was assigned for that surrogate. The
nonparametric statistical significance was obtained by calculating the pro-
portion of surrogates within the permutation distribution that exceeded the
observed cluster-level statistics.

Linking Neural Representations to Deep Neural Network Representations and
Semantic Representations. We characterized the representational formats
within different encoding time periods via a DNN, AlexNet (35) and a well-
established semantic model, Directional Skip-Gram (36). The AlexNet im-
plements a network for object identification, i.e., the assignment of object
labels to visual stimuli (SI Appendix, SI Text and Fig. S2). It was pretrained
using the ImageNet dataset (70). The AlexNet consists of eight layers, five
convolutional layers and three fully connected layers, which simulate the
hierarchical structure of neurons along the ventral visual stream. To verify

that the pretrained DNN can be applied to the pictures in our experiment,
we classified all target pictures using the DNN and only pictures whose labels
were correctly identified were included. We found that 47 of 56 pictures
were successfully classified (i.e., their labels were among the top five labels
provided by the DNN). For each of these 47 images, we then extracted the
simulated activations from each layer of DNN, which served as features for
RSA. We calculated Spearman’s correlations between the DNN features of
every pair of pictures, resulting in a 47 × 47 similarity matrix in each layer.

The semantic similarity matrix was calculated based on the labels of the
pictures, which were generated by five independent raters (SI Appendix, SI
Text). For each picture label, we extracted the semantic features (i.e., word
vectors) from a well-trained Chinese word embedding model, Directional
Skip-Gram (36). In this model, each word vector consists of 200 values, with
each value indicating the meaning of a picture label in one semantic di-
mension. The semantic similarities of the 56 picture labels were accessed by
calculating the cosine similarity of these word vectors, resulting in a 56 × 56
semantic similarity matrix. To obtain the abstract semantic similarity matrix,
we performed a stepwise regression in which we regressed the similarity
matrices of each DNN layer from the semantic similarity matrix. Note that
the semantic similarity was not reversely regressed out from the DNN. This is
because the DNN is specifically designed to provide labels to pictures,
regressing the semantic representations out from the DNN could effectively
deconstruct its organization.

To create the neural similarity matrix, we correlated all pairs of pictures
across frequencies and channels, using Spearman’s correlations. This was
done in sliding time windows of 200 ms, with a step size of 10 ms. In this
analysis, data across repetitions of the same pictures were first averaged. To
remove potential confounds of commonly evoked power across all trials on
neural activation pattern, we normalized the power spectral data across
trials during each time window for each frequency and each channel. No-
tably, this normalization does not significantly change the item-specific RSA
values (P > 0.25).

Finally, the DNN similarity matrices, the semantic similarity matrix, and the
abstract semantic matrix were correlated with the neural similarity matrix via
Spearman’s correlation in each encoding time window. The correlation
values were then Fisher Z-transformed for further statistical analysis.

To determine the significance of the correlations, the neural similarity
matrices were recalculated after randomly shuffling the labels of pictures.
The surrogate neural similarity matrices were then correlated with the
similarity matrix in each layer of the DNN, the semantic matrix as well as the
abstract semantic matrix separately. This was done 1,000 times. The statistical
significance was then determined by comparing the correlation values for
the empirical data with the distribution of correlation values for the
surrogate data.

Analysis of the Stability of Representational Formats Across Time. Previous
work argued that if neural representations are transformed from one time
point (t1) to another time point (t2), the off-diagonal similarity would be
significantly reduced (13). Accordingly, we quantified the dynamicity of this
transformation between t1 and t2 by comparing the on-diagonal similarity
values (r(t1, t1), r(t2, t2), etc.) with the off-diagonal similarity values (r(t1, t2)).
The dynamicity score (dyna) was obtained using the following equation:

dyna(t1, t2) = { 1,   if   r(t1, t2)<r(t1, t1)∩r(t1, t2)<r(t2, t2)
0,   otherwise

.

If r(t1, t1) and r(t2, t2) are both significantly greater than r(t1, t2) across
participants, then the dyna between t1 and t2 is 1, indicating that the neural
representational formats were transformed from t1 to t2. Otherwise the
dyna is 0. It should be noted that the correlation was not conducted be-
tween different time points within the same trial, in which r(t1, t1) or r(t2, t2)
is always 1. Instead, the similarity values reflect correlations between neural
activities of trials from two independent runs that share the same picture in
the current study, so that the off-diagonal reduction is nontrivial. Clusters
showing significant dynamicity (with dyna = 1) were corrected for multiple
comparisons using a cluster-based permutation test, in which the null dis-
tribution was obtained by randomly shuffling the on-diagonal similarity
values (e.g., r(t1, t1), r(t2, t2)) with the off-diagonal similarity values (e.g., r(t1,
t2)) for 1,000 times. To further characterize the representational dynamicity
over time, we averaged the dyna across the two temporal dimensions,
resulting in the dynamicism index (di(t)) over time by using the equation
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di(t) =  
1
2T

  (∑
t1

[dyna  (t1, t)] +  ∑
t2

[dyna  (t2, t)]),
where T denotes the number of the time windows during the encoding or
maintenance period. The larger the di is, the greater the representational
transformation.

Assessing Rhythmicity of VSTM Representations. IRASA is a well-established
method for disentangling the oscillatory component from the fractal com-
ponent (i.e., 1/f background activity) of a signal (38). We applied IRASA to
examine the rhythmicity of encoding–maintenance similarity during main-
tenance using the following steps. First, data were segmented into a con-
tinuous period of 5,250 ms (i.e., 75% of a trial duration, using sliding
windows with 500 ms as a step). Second, the auto-spectral density was cal-
culated by performing the fast Fourier transformation (FFT) on each of the
segments with frequencies ranging from 0.01 to 25 Hz. Third, for each
segment, we irregularly resampled the data with resampling rates h and 1/h
(h = 1.1:0.05:1.9) to up-sample and down-sample the data, respectively. The
auto-spectral density was computed again for the resampled data by FFT.
The fractal component distribution (1/f) across frequencies was estimated by
extracting the median from the resampled auto-spectral density separately
for each time point of a segment. Fourth, the oscillatory components were
obtained by subtracting the fractal component from the original auto-
spectral density of each segment. Then, we averaged the oscillatory com-
ponents and the fractal components across segments and trials. Notably, to
define the critical values for the significance test of oscillatory components,
we set the values of averaged fractal component plus three SDs as the
threshold, following a previous study (71). Distinctive peaks at any frequency
with oscillatory power above the threshold were defined as evidence for the
presence of oscillatory activities.

Analysis of Clustering of VSTM Representations to the Phase of Hippocampal
Low-Frequency Activity. The hippocampal low-frequency bands for the ex-
traction of phase values were determined by a data-driven analysis, MODAL
(40), which allowed us to detect oscillatory components in single trials.
Specifically, for each trial, the power at each frequency was obtained by
time-frequency transformation using Morlet wavelets (cycle number = 6).
Frequency bands with power surpassing the 1/f function were defined as
oscillatory components. Next, MODAL filtered the raw iEEG data using the
identified frequency band and applied frequency sliding to each time point
(72). We then summarized dominant frequencies and the duration when

they occurred across trials and participants. This analysis showed that oscil-
latory activities were detected in a broad frequency range between 1 and
10 Hz across all trials and participants, with peaks at 3 and 9 Hz (SI Appendix,
Fig. S6). The overall duration of oscillatory activity in a single frequency bin
(1 Hz) was no more than 30% of time points on average across all partici-
pants. The selection of this band was further confirmed by increased neural
activities in this frequency band during the maintenance period compared
to that during the prestimulus baseline period (300 to 500 ms prior to
stimulus onset) (SI Appendix, Fig. S6). Then, a bandpass filter (1 to 10 Hz) was
applied to the iEEG data of hippocampal channels. We performed a Hilbert
transformation on the filtered data to extract phase series.

The WI EMS between two trials with the same item was averaged across
the time windows in the early or the late encoding cluster, resulting in a time
course of WI EMS across the maintenance period of one trial. Coupling be-
tween WI EMS and concurrent phases of hippocampal low-frequency activity
(1 to 10 Hz) during the maintenance period was examined by the Moore–
Rayleigh test (43). As a nonparametric extension of the Rayleigh test, the
Moore–Rayleigh test ranks and weighs the phase according to the magni-
tude of the WI EMS. It then outputs a clustering value (r*) and a preferred
phase separately for the early and the late cluster of each trial. We obtained
the distribution of surrogate r* values by circularly shifting the amplitude
values with regard to the concurrent phases and recomputing the clustering
value. This was done 100 times. We then averaged the 100 surrogate r*
values and obtained one averaged surrogate r* value for each cluster of a
trial. These clustering values were averaged across trials. We then performed
a paired t test between empirical r* values and surrogate r* values across
participants.

Data Availability. Intracranial EEG data and materials are available at the
Open Science Framework: https://osf.io/yqftv/.
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